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Amyloid fibrils are self-propagating entities that spread pathology
in several devastating disorders including Alzheimer’s disease
(AD). In AD, amyloid-β (Aβ) peptides form extracellular plaques
that contribute to cognitive decline. One potential therapeutic
strategy is to develop inhibitors that prevent Aβ misfolding
into proteotoxic conformers. Here, we design specific aromatic
foldamers, synthetic polymers with an aromatic salicylamide
(Sal) or 3-amino benzoic acid (Benz) backbone, short length
(four repetitive units), basic arginine (Arg), lysine (Lys) or
citrulline (Cit) side chains, and various N- and C-terminal
groups that prevent spontaneous and seeded Aβ fibrillization. Ac-
Sal-(Lys-Sal)3-CONH2 and Sal-(Lys-Sal)3-CONH2 selectively
inhibited Aβ42 fibrillization, but were ineffective against Aβ43,
an overlooked species that is highly neurotoxic and frequently
deposited in AD brains. By contrast, (Arg-Benz)4-CONH2 and

(Arg-Sal)3-(Cit-Sal)-CONH2 prevented spontaneous and seeded
Aβ42 and Aβ43 fibrillization. Importantly, (Arg-Sal)3-(Cit-Sal)-
CONH2 inhibited formation of toxic Aβ42 and Aβ43 oligomers
and proteotoxicity. None of these foldamers inhibited Sup35
prionogenesis, but Sal-(Lys-Sal)3-CONH2 delayed aggregation
of fused in sarcoma (FUS), an RNA-binding protein with a
prion-like domain connected with amyotrophic lateral sclerosis
and frontotemporal dementia. We establish that inhibitors of
Aβ42 fibrillization do not necessarily inhibit Aβ43 fibrillization.
Moreover, (Arg-Sal)3-(Cit-Sal)-CONH2 inhibits formation of
toxic Aβ conformers and seeding activity, properties that could
have therapeutic utility.

Key words: Alzheimer’s disease, amyloid, Aβ42 (amyloid-β 42),
Aβ43 (amyloid-β 43), foldamer, protein misfolding.

INTRODUCTION

Protein misfolding can be fatal [1,2]. Proteins misfold from
soluble species into highly stable, cross-β amyloid fibrils in
Alzheimer’s disease (AD) and several other neurodegenerative
diseases [1,2]. One strategy to combat these disorders is to
develop small molecules that inhibit amyloidogenesis and prevent
toxic protein misfolding [3–6]. Although daunting challenges
face potential small molecule inhibitors of amyloidogenesis [7],
they are beginning to reach the clinic. Indeed, tafamidis,
a small molecule inhibitor of transthyretin amyloidogenesis
treats familial amyloid polyneuropathy, a rare but deadly
disease [8,9].

Here, we focus on amyloid-β (Aβ) peptides, Aβ42 and Aβ43,
which form amyloid fibrils and accumulate in extracellular
plaques that are a hallmark of AD [10–16]. AD is a progressive
neurodegenerative disease and the most common cause of
dementia worldwide [12]. Aging is a significant risk factor for
AD and there are no effective therapies [11]. In Aβ biogenesis,
the full-length transmembrane amyloid precursor protein (APP)
undergoes sequential cleavage by β- and γ -secretase, resulting
in peptides that are 38–43 amino acids in length [10,12]. Aβ42
and Aβ40 are most commonly associated with AD pathology

[10–12]. Aβ40 is a more benign, perhaps even neuroprotective
species [17,18], which slowly assembles into amyloid fibrils. By
contrast, Aβ42 oligomerizes and fibrillizes more rapidly due to
two additional C-terminal residues that introduce additional steric
zipper hexapeptides that drive assembly [19–21].

Although Aβ peptides longer than Aβ42 are found in AD, they
are not a major species and their pathogenic role has been ignored.
Recently, this view has changed. Aβ43 is a potent contributor
to neurotoxicity in AD [13–15]. Aβ43 contains an additional
threonine residue at the C-terminal end and fibrillizes more
rapidly than Aβ42 [13]. Aβ43 is more abundant in insoluble
fractions than Aβ40 in AD and its presence in senile plaques
is directly correlated with cognitive decline [13–16]. Specific
inhibitors of Aβ43 misfolding have not been identified and it
is unclear whether inhibitors of Aβ42 misfolding will also inhibit
Aβ43 misfolding.

Aβ monomers form amyloid via nucleated conformational
conversion [22]. First, a subpopulation of Aβ monomers forms
molten oligomers, which gradually rearrange into amyloidogenic
oligomers that nucleate cross-β fibrils [22,23]. Rearrangement is
rate limiting and causes the lag phase of spontaneous fibrillization
[22]. During lag phase, Aβ forms diverse oligomeric species,
which can be highly toxic [21,24–27]. Upon nucleation, fibrils
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Figure 1 Overview of aromatic foldamer structure

The core foldamer structure is shown in the dashed box, which can be decorated with different moieties at X-, R-, Y- and Z-positions indicated on the periphery. Foldamers possess an aromatic Sal
or Benz backbone (Y = OMe or H), Arg, Lys or Cit side chains (R = Arg, Lys or Cit), short length (two to four repetitive units) and various N- (X = NH2 or Ac) and C- (Z = NH2, OH, OMe or β-Ala)
terminal groups.

rapidly grow via their self-templating ends, which convert Aβ
conformers into the cross-β conformation [20,28]. When coupled
to fibril fragmentation, this ‘seeding’ activity enables Aβ fibrils to
become self-propagating agents that transmit pathology and
disease [1,29–31]. Aβ fibrils also provide catalytic surfaces for
‘secondary’ nucleation events distinct from fibril elongation [32–
34]. Here, lateral Aβ fibril surfaces convert Aβ monomers into
toxic oligomers [32–34]. Thus, formation of toxic oligomers and
fibrils is intimately linked [32–34]. These secondary nucleation
events also help explain Aβ assembly kinetics [32–34]. Aβ
forms different cross-β fibril structures termed ‘strains’, which
can differ in toxicity and cause distinct brain pathology [35–
38]. Aβ fibrils are usually less toxic than pre-amyloid oligomers
[21,39]. However, Aβ fibrils also display toxicity [6,35,36,39].
A key challenge is to manipulate Aβ assembly in a manner
that depopulates toxic conformers [7]. Agents that inhibit seeded
assembly hold promise for preventing the spread of Aβ pathology
in AD.

Numerous potential inhibitors of Aβ misfolding have
been explored, including small molecules, peptides, molecular
chaperones, protein disaggregases and antibodies [3,6,39–45].
In the present study, we explore a different strategy by
pursuing foldamers; non-biological discrete chain molecules that
lack a canonical peptide backbone but can fold into specific
structures [46]. Foldamers have been utilized as antimicrobial
agents and molecular scaffolds [47–50]. Peptides containing non-
natural amino acids, similar to foldamers, have been useful for
understanding the misfolding of various amyloidogenic peptides
[42,51–53]. Foldamers have several advantageous properties that
could make them a valuable class of amyloid inhibitors. Due to
their semi-rigid backbone, foldamers can assume an organized
conformation at low entropic cost with relatively few monomeric
units [50,54]. Compared with α peptides, foldamers have greater
thermodynamic stability and resist proteases. Furthermore,
foldamers of varying lengths with diverse side chains and 3D
shapes can be synthesized. These features enable foldamer design
for interaction with diverse biological targets [47–50,55]. In the
present study, we explore aromatic foldamers as antagonists of
Aβ42 and Aβ43 amyloidogenesis.

MATERIALS AND METHODS

Generation of soluble and fibrillar Aβ42 and Aβ43

To produce monomeric Aβ, synthetic lyophilized Aβ42 or
Aβ43 (W.M. Keck Facility, Yale University) was dissolved
in 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP, Sigma) at 2 mg/ml.
HFIP was removed by drying in a speed vacuum for 30 min.
The resulting peptide film was dissolved in DMSO to 1 mM.
Aβ42 or Aβ43 fibrils for seeding experiments were prepared by
diluting monomerized Aβ42 or Aβ43 in KHMD (150 mM KCl,
40 mM Hepes–KOH pH 7.4, 20 mM MgCl2 and 1 mM DTT) to
10 μM. This solution was incubated at 37 ◦C for 3–5 days with
agitation (700 r.p.m.) in an Eppendorf Thermomixer. For seeding
experiments, preformed fibrils were briefly sonicated or vortex-
mixed prior to use. We also prepared Aβ42 or Aβ43 using a
protocol that avoids DMSO. Thus, Aβ42 or Aβ43 was dissolved
in HFIP followed by evaporation of the solvent to dryness [56].
Dry peptide films were dissolved in a minimal volume of 60 mM
NaOH followed by dilution with deionized water and sonication
for 1 min using a bath sonicator. Peptides were diluted to 0.2 mM
by adding an equal volume of 20 mM sodium phosphate buffer
(PB, Sigma), pH 8 plus 0.2 mM EDTA (PBE). Samples were
centrifuged at 16000 g for 3 min and subjected to Superdex 75
gel filtration in PBE to remove residual solvent.

Foldamers

Foldamers (Lys-Sal)4-CONH2, (Arg-Benz)4-CONH2, (Lys-Sal)4-
COMe, (Lys-Sal)4-COOH, (Lys-Sal)4-COβAla, Ac-(Lys-Sal)3-
CONH2, Sal-(Lys-Sal)3-CONH2 and Ac-Sal-(Lys-Sal)3-CONH2

(where Sal is salicylamide and Benz is 3-amino benzoic acid) were
from PolyMedix and were dissolved in TBS (50 mM Tris/HCl
pH 7.4, 150 mM NaCl) to obtain concentrated stock solutions.
Foldamers (Cit-Sal)4-CONH2, (Arg-Sal)2-(Cit-Sal)-(Arg-Sal)-
CONH2, (Arg-Sal)3-(Cit-Sal)-CONH2, (Cit-Sal)2-(Arg-Sal)-(Cit-
Sal)-CONH2, (Cit-Sal)-(Arg-Sal)-(Cit-Sal)2-CONH2 and (Arg-
Sal-Cit-Sal)2-CONH2 were also from PolyMedix. These
foldamers were dissolved in 1:1 TBS/DMSO to obtain
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Figure 2 Nomenclature and structure of aromatic foldamers

Three-letter amino acid nomenclature is used to indicate the side chain (Lys, Arg or Cit) and the Sal or Benz backbone is indicated. N- (Ac) and C- (NH2, OH, OMe or β-Ala) terminal groups are also
indicated. Foldamers that inhibit spontaneous Aβ42 and Aβ43 fibrillization, (Arg-Benz)4-CONH2 and (Arg-Sal)3-(Cit-Sal)-CONH2, are boxed in black. Foldamers that inhibit spontaneous Aβ42
fibrillization but not spontaneous Aβ43 fibrillization, Sal-(Lys-Sal)3-CONH2 and Ac-Sal-(Lys-Sal)3-CONH2, are boxed in grey.

concentrated stocks. Subsequent dilutions were made from these
stocks to appropriate concentrations in KHMD or PBE.

Foldamers (Lys-Sal)2-CONH2, Ac-(Lys-Sal)2-CONH2, Sal-
(Lys-Sal)2-CONH2, (Lys-Sal)3-CONH2 and Ac-(Lys-Sal)3-
CONH2 were synthesized at room temperature on a 100 μmol
scale using rink amide resin (GemScript Corporation, 0.6 mmol/g
substitution) for support of alternating α- (Bachem) and aromatic
amino acids. Resin was swelled in 100% dimethylformamide
(DMF, Fisher Scientific) for 1 h, followed by a 30 min
deprotection using 5% piperazine (Sigma–Aldrich) in DMF.

The first residue was coupled to the resin using 3 equiv. of
amino acid, 2.8 equiv. of 2-(6-chloro-1H-benzotriazole-1-yl)-
1,1,3,3-tetramethylaminium hexafluorophosphate (HCTU, GL
Biosciences) activator and 7.5 equiv. of di-isopropylethylamine
(DIEA, CHEM-IMPEX International), shaking for 1 h at room
temperature. The resin was washed three times each with
DMF, dichloromethane (DCM, Fisher Scientific) and DMF. This
step was followed by deprotection (as above). Coupling and
deprotection steps were cycled for the remaining residues in
each respective peptide sequence. After deprotection of the
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Figure 3 (Arg-Benz)4-CONH2, (Arg-Sal)3-(Cit-Sal)-CONH2, Sal-(Lys-Sal)3-CONH2 and Ac-Sal-(Lys-Sal)3-CONH2 inhibit spontaneous Aβ42 fibrillization

(A) Aβ42 (5 μM) was incubated with agitation for 8 h at 25◦C plus or minus the indicated foldamer (10 μM). Aβ42 fibrillization was assessed by ThT fluorescence. Values represent means +− S.E.M.
(n = 3–6). A one-way ANOVA with the post-hoc Dunnett’s multiple comparisons test was used to compare Aβ42 alone to each Aβ42 plus foldamer condition (* denotes P < 0.05). Foldamers that
selectively inhibit Aβ42 fibrillization are indicated by grey bars and foldamers that inhibit Aβ42 and Aβ43 fibrillization are indicated by black bars. (B) Aβ42 (5 μM) was incubated with agitation
for 4 h at 25◦C in the absence or presence of the indicated foldamer (10 μM). Aβ42 fibrillization was assessed by EM. Scale bar, 500 nm.
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Figure 4 Effect of inhibitory foldamers on spontaneous Aβ42 fibrillization kinetics

(A–D) Aβ42 (5 μM) was incubated with agitation for 0–8 h at 25◦C in the absence (open circles) or presence of 5 μM (filled triangles), 10 μM (filled squares) or 20 μM (filled circles)
(Arg-Benz)4-CONH2 (A), (Arg-Sal)3-(Cit-Sal)-CONH2 (B), Sal-(Lys-Sal)3-CONH2 (C) or Ac-Sal-(Lys-Sal)3-CONH2 (D). Aβ42 fibrillization was assessed by ThT fluorescence. Values represent
means +− S.E.M. (n = 3).

final residue the product was rinsed [three times with DMF,
three times with DCM, three times with DMF and three times
with methanol (MeOH)] and dried with MeOH. This product
was split in half. The first half was re-swelled in DMF and
acetylated by incubating the resin in 5% acetic anhydride in 2.5%
DIEA and 92.5% DMF for 10 min. This acetylated portion was
rinsed and dried (as above). Next, both halves (one with a N-
terminal acetyl and a second with a N-terminal free amide) were
cleaved from the resin using a cocktail of 2:2:2:94 H2O/TIS
(tri-isopropyl silane)/anisole/TFA (trifluoroacetic acid; Sigma–
Aldrich) for 2 h at room temperature. The peptide solution was
filtered from the resin and precipitated using 1:1 cold ethyl
ether:hexane. The precipitate was dried by lyophilization. The
mass and purity of each product was verified by MALDI–TOF
MS (Brucker microflex LRF) and analytical HPLC (C18 column).
Dried crude foldamer was purified by preparative reverse-phase
HPLC, dried by lyophilization and mass and purity was verified
as above. All samples were prepared by directly dissolving
lyophilized foldamer into TBS buffer to 2 mM.

Spontaneous and seeded Aβ42, Aβ43 and N-terminal and middle
domain of Sup35 (NM) fibrillization

For spontaneous fibrillization, soluble Aβ42 or Aβ43 (1 mM)
in DMSO was diluted to 5 μM in KHMD containing
25 μM thioflavin-T (ThT) plus or minus foldamer (0–20 μM).
For seeded fibrillization, preformed Aβ42 or Aβ43 fibrils
(10 μM monomer) were added at a final concentration of
0.1 μM (monomer). Alternatively, Aβ42 or Aβ43 were prepared
using just HFIP and were assembled at 5 μM in PBE containing
25 μM ThT plus or minus foldamer (20 μM). NM was purified as
described [57]. NM (5 μM) was assembled in KHMD containing

25 μM ThT plus or minus foldamer (20 μM). For seeded
fibrillization, preformed NM fibrils (5 μM monomer) were added
at a final concentration of 0.1 μM (monomer). Reactions were
conducted in 96-well plates and incubated at 25 ◦C in a TECAN
Safire II plate reader (Tecan USA) for up to 8 h with agitation. ThT
fluorescence was measured at the indicated times. The excitation
wavelength was 450 nm (5 nm bandwidth) and the emission
wavelength was 482 nm (10 nm bandwidth). ThT fluorescence
values reported are arbitrary and are normalized to the final
assembly time point of the Aβ alone condition.

FUS aggregation

GST–TEV–FUS was purified as described [58]. Aggregation was
initiated by addition of tobbaco etch virus (TEV) protease to
GST–TEV–FUS (5 μM) plus or minus foldamer (20 μM) in
assembly buffer (50 mM Tris/HCl pH 8, 0.2 M trehalose and
20 mM glutathione). Aggregation was for 0–90 min at 25 ◦C
without agitation in a 96-well plate and was assessed by turbidity
(absorbance at 395 nm) using a Tecan Infinite M1000 plate reader
[58]. No aggregation occurred unless TEV protease was added to
separate GST from FUS [58]. SDS/PAGE and Coomassie staining
revealed that foldamers did not inhibit cleavage of GST–TEV–
FUS by TEV.

Electron microscopy

Reactions were adhered on to 300-mesh-formvar carbon-coated
EM grids overnight before being negatively stained with 2%
uranyl acetate for 2 min and rinsed with milli-Q distilled water.
Micrographs were acquired using a JEOL 1010 TEM (Jeol USA).
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Tracking A11-reactive Aβ42 or Aβ43 conformers

The oligomer-specific A11 antibody was used to detect toxic
Aβ42 or Aβ43 oligomers by ELISA as described [21]. Foldamers
did not cross-react with A11.

Toxicity assays

SH-SY5Y human neuroblastoma cells were maintained in
Dulbecco’s modified Eagle’s medium (DMEM) plus 10 mM
Hepes, 10% FBS, 4 mM glutamine, penicillin (200 units/ml)
and streptomycin (200 μg/ml) in 5% CO2 at 37 ◦C. Cells were
differentiated in serum-free DMEM with N2 supplement and
10 μM all-trans-retinoic acid before use. Cells were plated
at (10000 cells/well) in 96-well plates and grown overnight.
Medium was removed and Aβ conformers or controls were added
and cells were incubated for 24 h at 37 ◦C. Toxicity was assessed
using an MTT kit (Tox-1; Sigma) or via lactate dehydrogenase
(LDH) release using the CytoTox-ONETM kit (Promega). Toxicity
values were normalized to the buffer control without Aβ.

RESULTS AND DISCUSSION

Rationale and foldamer design

As potential inhibitors of Aβ42 and Aβ43 amyloidogenesis, we
explored aromatic foldamers (Figures 1 and 2). Some of these
foldamers were originally synthesized as inhibitors of heparin
and are rich in aromatic and positively charged groups [55].
They possess an aromatic salicylamide (Sal) or 3-amino benzoic
acid (Benz) backbone (Figure 1; Y = OMe or H), lysine (Lys),
arginine (Arg) or citrulline (Cit) side chains (Figure 1; R = Lys,
Arg or Cit), short length (two to four repetitive units) (Figure 1)
and various N- (Figure 1; X = NH2 or COMe [Ac]) and C-
(Figure 1; Z = NH2, OH, OMe or β-Ala) terminal groups. We
selected this design for four reasons. First, the aromatic backbone
is similar to ones employed by Nowick et al. [42,51–53] in
protein aggregation inhibitors. Secondly, interactions between
aromatic residues within short amyloidogenic peptides mediate
molecular recognition during fibrillization [59]. Moreover,
polyphenols such as ( − )-epigallocatechin-3-gallate (EGCG)
inhibit amyloidogenesis and prevent cytotoxicity [57,59–61].
Thus, the aromatic foldamer spine might antagonize aromatic
interactions critical for fibrillization. Thirdly, the aromatic
foldamers investigated are approximately the same length (two
to four repetitive units) as steric zipper hexapeptides that form
amyloid [19]. Finally, basic side chains, particularly arginine exert
hydrotropic effects and prevent protein aggregation [62].

Foldamer inhibition screen

We tested 18 aromatic foldamers (Figure 2) for inhibition of
spontaneous (i.e. in the absence of preformed fibrils) Aβ42
fibrillization. The majority of foldamers did not significantly
inhibit Aβ42 fibrillization (Figure 3A). However, (Arg-Benz)4-
CONH2, (Arg-Sal)3-(Cit-Sal)-CONH2, Sal-(Lys-Sal)3-CONH2

and Ac-Sal-(Lys-Sal)3-CONH2 were strong inhibitors (Figure 2
boxed in black or grey; Figures 3A and 3B; Figures 4A–4D).
(Arg-Sal)3-(Cit-Sal)-CONH2 was the most potent with an IC50 of
∼1.6 μM.

Several important foldamer properties emerge for inhibition
of Aβ42 fibrillization. First, a foldamer must have a backbone
with at least four aromatic units to antagonize Aβ42
fibrillization. Thus, (Lys-Sal)2-CONH2, Ac-(Lys-Sal)2-CONH2,
Sal-(Lys-Sal)2-CONH2, (Lys-Sal)3-CONH2 and Ac-(Lys-Sal)3-

Figure 5 Sal-(Lys-Sal)3-CONH2 has no effect on NM fibrillization but delays
FUS aggregation

(A) NM (5 μM) was incubated with agitation for 4 h at 25◦C plus or minus the indicated foldamer
(20 μM). NM fibrillization was assessed by ThT fluorescence. Values represent means +− S.E.M.
(n = 3). A one-way ANOVA with the post-hoc Dunnett’s multiple comparisons test was used to
compare NM alone to each NM plus foldamer condition (* denotes P < 0.05). (B) GST-FUS
(5 μM) was incubated in the presence of the indicated foldamer (20 μM) plus TEV protease at
25◦C for 0–90 min. Turbidity measurements (absorbance at 395 nm) were taken every minute
to assess aggregation. A representative dataset is shown.

CONH2 failed to inhibit assembly (Figures 2 and 3A). Secondly,
foldamers with more than three lysine or citrulline side chains
were ineffective, encompassing: (Lys-Sal)4-CONH2, (Cit-Sal)4-
CONH2, (Lys-Sal)4-COMe, (Lys-Sal)4-COOH and (Lys-Sal)4-
COβAla (Figures 2 and 3A). By contrast, Sal-(Lys-Sal)3-
CONH2 and Ac-Sal-(Lys-Sal)3-CONH2, which possess three
lysine side chains and four aromatic backbone units, were potent
inhibitors (Figures 2 and 3A). Thirdly, foldamers with three
or more consecutive Arg side chains were effective inhibitors.
Thus, (Arg-Benz)4-CONH2 and (Arg-Sal)3-(Cit-Sal)-CONH2

were potent inhibitors, whereas (Arg-Sal)2-(Cit-Sal)-(Arg-Sal)-
CONH2, (Cit-Sal)2-(Arg-Sal)-(Cit-Sal)-CONH2, (Cit-Sal)-(Arg-
Sal)-(Cit-Sal)2-CONH2 and (Arg-Sal-Cit-Sal)2-CONH2 were
ineffective (Figures 2 and 3A).

Select small molecules that inhibit Aβ42 fibrillization also
disassemble Aβ42 fibrils [4,57,60]. However, even when
present in 4-fold molar excess, (Arg-Benz)4-CONH2, (Arg-Sal)3-
(Cit-Sal)-CONH2, Sal-(Lys-Sal)3-CONH2 and Ac-Sal-(Lys-Sal)3-
CONH2 did not disassemble Aβ42 fibrils after 24 h (results not
shown). Thus, these foldamers do not reverse Aβ42 fibrillization.
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Figure 6 (Arg-Sal)3-(Cit-Sal)-CONH2 and Ac-Sal-(Lys-Sal)3-CONH2 inhibit seeded Aβ42 fibrillization

(A–D) Aβ42 (5 μM) was incubated with agitation for 0–2 h at 25◦C without (open squares) or with Aβ42 fibril seed (0.1 μM monomer) in the absence (open circles) or presence of 5 μM (filled
triangles), 10 μM (filled squares) or 20 μM (filled circles) (Arg-Benz)4-CONH2 (A), (Arg-Sal)3-(Cit-Sal)-CONH2 (B), Sal-(Lys-Sal)3-CONH2 (C) or Ac-Sal-(Lys-Sal)3-CONH2 (D). Aβ42 fibrillization
was assessed by ThT fluorescence. Values represent means +− S.E.M. (n = 3). (E) Aβ42 (5 μM) plus Aβ42 fibril seed (0.1 μM monomer) was incubated with agitation for 4 h at 25◦C plus or
minus the indicated foldamer (10 μM). Aβ42 fibrillization was assessed by EM. Scale bar, 500 nm.

Foldamers that inhibit Aβ42 fibrillization do not inhibit NM
fibrillization

Next, we assessed foldamer specificity by testing whether they in-
hibited amyloidogenesis of the prion domain, NM, of yeast Sup35
[63]. (Arg-Benz)4-CONH2, (Arg-Sal)3-(Cit-Sal)-CONH2, Sal-
(Lys-Sal)3-CONH2 and Ac-Sal-(Lys-Sal)3-CONH2 did not inhibit
NM fibrillization (Figure 5A). In the presence of (Arg-Benz)4-
CONH2, NM formed fibrils that exhibited greater ThT fluores-
cence (Figure 5A). EM revealed that purely NM fibrils formed
in the presence or absence of (Arg-Benz)4-CONH2 and sedi-
mentation analysis revealed that equal quantities of NM formed
fibrils (results not shown). Thus, (Arg-Benz)4-CONH2 does not

stimulate NM fibrillization. Rather, we suggest that NM accesses
a different prion strain in the presence of (Arg-Benz)4-CONH2.
NM accesses different prion strains in the presence of certain
small molecules, such as EGCG [57,63]. None of these foldamers
inhibited seeded NM fibrillization (results not shown). Thus, these
foldamers are not generic inhibitors of amyloidogenesis.

Sal-(Lys-Sal)3-CONH2 delays FUS aggregation

To further test specificity, we assessed inhibition of
aggregation of FUS, an RNA-binding protein with a
prion-like domain, which is connected with amyotrophic
lateral sclerosis and frontotemporal dementia [1,58,64].
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Figure 7 (Arg-Benz)4-CONH2 and (Arg-Sal)3-(Cit-Sal)-CONH2 inhibit spontaneous Aβ43 fibrillization

(A–D) Aβ43 (5 μM) was incubated with agitation for 0–8 h at 25◦C in the absence (open circles) or presence of 5 μM (filled triangles), 10 μM (filled squares) or 20 μM (filled circles)
(Arg-Benz)4-CONH2 (A), (Arg-Sal)3-(Cit-Sal)-CONH2 (B), Sal-(Lys-Sal)3-CONH2 (C) or Ac-Sal-(Lys-Sal)3-CONH2 (D). Aβ43 fibrillization was assessed by ThT fluorescence. Values represent
means +− S.E.M. (n = 3). (E) Aβ43 (5 μM) was incubated with agitation for 4 h at 25◦C in the absence or presence of the indicated foldamer (10 μM). Aβ43 fibrillization was assessed by EM.
Scale bar, 500 nm.

(Arg-Benz)4-CONH2, (Arg-Sal)3-(Cit-Sal)-CONH2 and Ac-
Sal-(Lys-Sal)3-CONH2 did not inhibit FUS aggregation
(Figure 5B). Interestingly, Sal-(Lys-Sal)3-CONH2 delayed
FUS aggregation (Figure 5B). Sal-(Lys-Sal)3-CONH2 could
serve as a lead foldamer to be optimized against FUS misfolding.

(Arg-Sal)3-(Cit-Sal)-CONH2 and Ac-Sal-(Lys-Sal)3-CONH2 inhibit
seeded Aβ42 fibrillization

(Arg-Benz)4-CONH2 and Sal-(Lys-Sal)3-CONH2 only inhibited
seeded Aβ42 fibrillization when present at a 4-fold molar excess

over Aβ42 (Figures 6A and 6C, filled circles; Figure 6E).
Even at this high concentration, some fibrillization occurred
in the presence of (Arg-Benz)4-CONH2 (Figure 6A, filled
circles) but was very limited by Sal-(Lys-Sal)3-CONH2

(Figure 6C, filled circles). Thus, (Arg-Benz)4-CONH2 and
Sal-(Lys-Sal)3-CONH2 are more potent inhibitors of spontaneous
Aβ42 fibrillization (Figures 4A and 4C) than seeded Aβ42
fibrillization (Figures 6A and 6C). (Arg-Benz)4-CONH2

and Sal-(Lys-Sal)3-CONH2 likely preferentially inhibit the
rearrangement of Aβ42 oligomers into fibril-nucleating
species [22]. Once Aβ42 fibrils have formed,
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Figure 8 Foldamers (Arg-Benz)4-CONH2 and (Arg-Sal)3-(Cit-Sal)-CONH2 inhibit seeded Aβ43 fibrillization

(A–D) Aβ43 (5 μM) was incubated with agitation for 0–2 h at 25◦C without (open squares) or with Aβ43 fibril seed (0.1 μM monomer) in the absence (open circles) or presence of 5 μM (filled
triangles), 10 μM (filled squares) or 20 μM (filled circles) (Arg-Benz)4-CONH2 (A), (Arg-Sal)3-(Cit-Sal)-CONH2 (B), Sal-(Lys-Sal)3-CONH2 (C) or Ac-Sal-(Lys-Sal)3-CONH2 (D). Aβ43 fibrillization
was assessed by ThT fluorescence. Values represent means +− S.E.M. (n = 3). (E) Aβ43 (5 μM) plus Aβ43 fibril seed (0.1 μM monomer) was incubated with agitation for 4 h at 25◦C plus or
minus the indicated foldamer (10 μM). Aβ42 fibrillization was assessed by EM. Scale bar, 500 nm.

(Arg-Benz)4-CONH2 and Sal-(Lys-Sal)3-CONH2 have reduced
ability to inhibit assembly.

Ac-Sal-(Lys-Sal)3-CONH2 and (Arg-Sal)3-(Cit-Sal)-CONH2

inhibited seeded Aβ42 fibrillization at all concentrations tested
(Figures 6B, 6D and 6E). (Arg-Sal)3-(Cit-Sal)-CONH2 was
more potent with an IC50 of ∼2.5 μM (Figures 6B, 6D and
6E). Thus, Ac-Sal-(Lys-Sal)3-CONH2 and (Arg-Sal)3-(Cit-Sal)-
CONH2 inhibit Aβ42 fibrillization even after formation of species
that nucleate fibrillization.

(Arg-Benz)4-CONH2 and (Arg-Sal)3-(Cit-Sal)-CONH2 inhibit
spontaneous Aβ43 fibrillization

It is unknown whether inhibitors that target Aβ42 will also
be active against Aβ43. In the absence of foldamer, Aβ43
fibrillization assembled more rapidly than Aβ42 (Figures 4A–
4D, and 7A–7D). Sal-(Lys-Sal)3-CONH2 and Ac-Sal-(Lys-
Sal)3-CONH2 did not block spontaneous Aβ43 fibrillization
(Figures 7C–7E). Indeed, Sal-(Lys-Sal)3-CONH2 enabled Aβ43
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fibrils to form that exhibited higher ThT fluorescence (Figures 7C
and 7E) and sedimentation analysis revealed that equal quantities
of Aβ43 formed fibrils (results not shown). Thus, Sal-(Lys-Sal)3-
CONH2 does not stimulate Aβ43 fibrillization. Rather, Aβ43
may access a different amyloid strain in the presence of Sal-
(Lys-Sal)3-CONH2. These findings suggest that potent inhibitors
of spontaneous Aβ42 fibrillization may not inhibit spontaneous
Aβ43 fibrillization. By contrast, (Arg-Benz)4-CONH2 and (Arg-
Sal)3-(Cit-Sal)-CONH2 blocked spontaneous Aβ43 fibrillization
(Figures 7A, 7B and E). In both cases, small oligomers were
the major species (Figure 7E). The IC50 of (Arg-Sal)3-(Cit-Sal)-
CONH2 was ∼3.1 μM (Figures 7A and 7B).

(Arg-Benz)4-CONH2 and (Arg-Sal)3-(Cit-Sal)-CONH2 inhibit seeded
Aβ43 fibrillization

Aβ43 fibrils eliminated the lag phase of Aβ43 assembly
(Figures 8A–8D, compare open squares and open circles). Sal-
(Lys-Sal)3-CONH2 and Ac-Sal-(Lys-Sal)3-CONH2 did not inhibit
seeded Aβ43 fibrillization (Figures 8C–8E). Sal-(Lys-Sal)3-
CONH2 enabled Aβ43 to access fibrillar forms that generated
a higher ThT fluorescence signal, perhaps indicative of a distinct
Aβ43 amyloid strain (Figure 8C). By contrast, (Arg-Benz)4-
CONH2 and (Arg-Sal)3-(Cit-Sal)-CONH2 blocked seeded Aβ43
fibrillization (Figures 8A, 8B and 8E). The IC50 of (Arg-Sal)3-(Cit-
Sal)-CONH2 against seeded Aβ43 fibrillization was ∼1.7 μM.

Foldamers inhibit Aβ42 and Aβ43 fibrillization under different
assembly conditions

Next, we established that foldamers inhibited spontaneous and
seeded Aβ42 and Aβ43 fibrillization under different assembly
conditions, which might support formation of different amyloid
strains. Thus, we avoided DMSO in Aβ preparation and
assembled in a higher pH buffer. Under these conditions, a
negative control foldamer, (Cit-Sal)4-CONH2, had no effect
(Figure 9). By contrast, (Arg-Benz)4-CONH2, (Arg-Sal)3-(Cit-
Sal)-CONH2, Sal-(Lys-Sal)3-CONH2 and Ac-Sal-(Lys-Sal)3-
CONH2 inhibited spontaneous and seeded Aβ42 fibrillization
(Figure 9), whereas only (Arg-Benz)4-CONH2 and (Arg-Sal)3-
(Cit-Sal)-CONH2 inhibited spontaneous and seeded Aβ43
fibrillization (Figure 9).

(Arg-Sal)3-(Cit-Sal)-CONH2 antagonizes formation of A11-reactive
Aβ42 and Aβ43 oligomers

Could foldamers inhibit the formation of toxic Aβ42 and Aβ43
oligomers? To assess toxic Aβ42 and Aβ43 oligomer formation,
we employed the conformation-specific A11 antibody, which
specifically recognizes preamyloid oligomers formed by multiple
proteins, including Aβ42, but not monomers or fibrils [21].
We assessed formation of A11-reactive species at the start of
spontaneous assembly (0 h), at the end of lag phase (0.5 h), and
at the endpoint of fibrillization (4 h). In the absence of Aβ42
and Aβ43, no A11 immunoreactivity was observed (results not
shown). For Aβ42 and Aβ43, A11-reactive conformers were
scarce at the start of the reaction (Figure 10A, buffer controls,
black bars), abundant at end of lag phase (Figure 10A, buffer
controls, grey bars), and declined once fibrillization was complete
(Figure 10A, buffer controls, white bars). Aβ43 exhibited greater
A11-immunoreactivity than Aβ42 and appears more prone to
accessing this toxic conformation (Figure 10A).

A negative control foldamer, (Cit-Sal)4-CONH2 (Figure 2), had
no effect on the appearance and disappearance of A11-reactive

Figure 9 Foldamers inhibit Aβ42 and Aβ43 fibrillization under different
assembly conditions

Aβ42 or Aβ43 (5 μM) were incubated with agitation for 16 h at 25◦C without or
with Aβ42 fibril seed or Aβ43 fibril seed (0.1 μM monomer) plus or minus 20 μM
(Arg-Benz)4-CONH2, (Arg-Sal)3-(Cit-Sal)-CONH2, Sal-(Lys-Sal)3-CONH2, Ac-Sal-(Lys-Sal)3

-CONH2 or (Cit-Sal)4-CONH2. Fibrillization was assessed by ThT fluorescence. Values represent
means +− S.E.M. (n = 3).

Aβ42 and Aβ43 conformers (Figure 10A). (Arg-Benz)4-CONH2,
Sal-(Lys-Sal)3-CONH2 and Ac-Sal-(Lys-Sal)3-CONH2 had no
effect on the abundance of A11-reactive Aβ42 or Aβ43 oligomers
after 0.5 h (Figure 10A, grey bars). Thus, these foldamers inhibit
spontaneous Aβ42 or Aβ43 fibrillization without affecting the
formation of A11-reactive conformers. Furthermore, after 4 h in
the presence of (Arg-Benz)4-CONH2, Sal-(Lys-Sal)3-CONH2 and
Ac-Sal-(Lys-Sal)3-CONH2, A11-reactive Aβ42 species remained
at higher levels and did not decline as much as they did in
the absence of foldamer (Figure 10A, white bars). Thus, (Arg-
Benz)4-CONH2, Sal-(Lys-Sal)3-CONH2, and Ac-Sal-(Lys-Sal)3-
CONH2 stabilize A11-reactive conformers. (Arg-Benz)4-CONH2,
but not Sal-(Lys-Sal)3-CONH2 or Ac-Sal-(Lys-Sal)3-CONH2, had
a similar effect on A11-reactive Aβ43 species (Figure 10A). By
contrast, A11-reactive Aβ43 species declined more extensively
after 4 h in the presence of Sal-(Lys-Sal)3-CONH2 or Ac-Sal-
(Lys-Sal)3-CONH2 (Figure 10A, white bars), which do not inhibit
spontaneous Aβ43 fibrillization (Figures 7C and 7D).

(Arg-Sal)3-(Cit-Sal)-CONH2 inhibited the formation of A11-
reactive Aβ42 and Aβ43 conformers after 0.5 h (Figure 10A,
grey bars). After 4 h, (Arg-Sal)3-(Cit-Sal)-CONH2 prevented
further accumulation of A11-reactive Aβ42 and Aβ43 conformers
(Figure 10A, white bars). Thus, (Arg-Sal)3-(Cit-Sal)-CONH2

inhibits fibrillization as well as toxic oligomer formation by Aβ42
and Aβ43. (Arg-Sal)3-(Cit-Sal)-CONH2 might inhibit Aβ42 and
Aβ43 misfolding by a mechanism that is distinct to the other
foldamers and arrests Aβ42 and Aβ43 misfolding prior to an
A11-reactive oligomeric state.

(Arg-Sal)3-(Cit-Sal)-CONH2 inhibits formation of toxic Aβ42 and
Aβ43 conformers

Next, we evaluated the relative toxicity of Aβ42 and Aβ43
conformers formed in the absence or presence of foldamers. We
applied Aβ42 and Aβ43 conformers to SH-SY5Y neuroblastoma
cells and assessed cell viability using MTT reduction and LDH
release. Foldamers and buffer display little toxicity in the absence
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Figure 10 (Arg-Sal)3-(Cit-Sal)-CONH2 inhibits formation of toxic Aβ42 and Aβ43 conformers

(A–C) Aβ42 or Aβ43 (5 μM) was incubated at 25◦C with agitation for 0 h (black bars), 0.5 h (grey bars) or 4 h (white bars) in the absence or presence of 20 μM (Arg-Benz)4-CONH2,
(Arg-Sal)3-(Cit-Sal)-CONH2, Sal-(Lys-Sal)3-CONH2, Ac-Sal-(Lys-Sal)3-CONH2 or (Cit-Sal)4-CONH2. At the indicated times, the amount of A11-reactive species present (A) or toxicity to
SH-SY5Y neuroblastoma cells in culture was determined via MTT reduction (B) or LDH release (C). We also assessed the toxicity of buffer, (Arg-Benz)4-CONH2, (Arg-Sal)3-(Cit-Sal)-CONH2,
Sal-(Lys-Sal)3-CONH2, Ac-Sal-(Lys-Sal)3-CONH2 or (Cit-Sal)4-CONH2 alone (B and C). Values represent means +− S.E.M. (n = 3). A one-way ANOVA with the post-hoc Dunnett’s multiple
comparisons test was used to compare Aβ42 plus buffer to each Aβ42 plus foldamer condition (* denotes P < 0.05). Likewise, a one-way ANOVA with the post-hoc Dunnett’s multiple comparisons
test was used to compare Aβ43 plus buffer to each Aβ43 plus foldamer condition (* denotes P < 0.05).
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of Aβ (Figures 10B and 10C, far right). In the absence of foldamer,
Aβ42 and Aβ43 exhibited little toxicity after 0 h (Figures 10B
and 10C), consistent with reduced A11 immunoreactivity at this
time (Figure 10A). Aβ42 and Aβ43 were more toxic after 0.5 h
of assembly than after 4 h (Figures 10B and 10C), indicating
that conformers that accumulate at the end of lag phase are
more toxic than mature fibrils. In the absence of foldamer, Aβ43
conformers were generally more toxic than Aβ42 conformers
(Figures 10B and 10C). The negative control foldamer, (Cit-
Sal)4-CONH2, had no effect on toxicity (Figures 10B and 10C).
(Arg-Benz)4-CONH2, Sal-(Lys-Sal)3-CONH2 and Ac-Sal-(Lys-
Sal)3-CONH2 had no effect on the toxicity of Aβ42 conformers
after 0.5 h of assembly (Figures 10B and 10C, grey bars), but
after 4 h of assembly the toxicity of Aβ42 conformers was
enhanced (Figures 10B and 10C, white bars). Thus, (Arg-Benz)4-
CONH2, Sal-(Lys-Sal)3-CONH2 and Ac-Sal-(Lys-Sal)3-CONH2

inhibit spontaneous Aβ42 fibrillization such that more toxic
conformers are maintained (Figures 10A–C). For Aβ43, neither
Sal-(Lys-Sal)3-CONH2 nor Ac-Sal-(Lys-Sal)3-CONH2 affected
the toxicity of conformers after 0.5 h or 4 h (Figures 10B and 10C).
However, as for Aβ42, (Arg-Benz)4-CONH2 had no effect on the
toxicity of Aβ43 conformers after 0.5 h of assembly (Figures 10B
and 10C, grey bars), but after 4 h the toxicity of Aβ43 conformers
was enhanced (Figures 10B and 10C, white bars). Thus, (Arg-
Benz)4-CONH2 inhibits spontaneous Aβ43 fibrillization in a
manner that maintains toxic conformers (Figures 10A–10C).

(Arg-Sal)3-(Cit-Sal)-CONH2, which inhibited the formation of
A11-reactive Aβ42 and Aβ43 conformers after 0.5 h (Figure 10A,
grey bars), also partially reduced the toxicity of Aβ42 and Aβ43
conformers at this time (Figures 10B and 10C, grey bars) and at
4 h (Figures 10B and 10C, white bars). Although Aβ42 and Aβ43
conformers still conferred toxicity in comparison with buffer
controls, (Arg-Sal)3-(Cit-Sal)-CONH2 was the only foldamer that
antagonized Aβ42 and Aβ43 toxicity.

(Arg-Sal)3-(Cit-Sal)-CONH2 inhibits spontaneous and seeded
Aβ42 and Aβ43 fibrillization and reduces accumulation of toxic
Aβ42 and Aβ43 conformers. This combination of properties
could have therapeutic potential for three reasons. First, (Arg-
Sal)3-(Cit-Sal)-CONH2 antagonizes Aβ42 as well as Aβ43, which
is an often overlooked but highly toxic Aβ species [13–16].
Secondly, (Arg-Sal)3-(Cit-Sal)-CONH2 inhibits the formation
of toxic Aβ42 and Aβ43 conformers, which could reduce
localized neurodegeneration [65]. Thirdly, (Arg-Sal)3-(Cit-Sal)-
CONH2 inhibits seeded Aβ42 and Aβ43 assembly, which could
prevent the spreading of Aβ pathology throughout the brain in
AD [29–31]. Further studies are needed to assess the utility of
(Arg-Sal)3-(Cit-Sal)-CONH2 against Aβ misfolding and toxicity
in the metazoan nervous system.

Future studies will reveal the mechanisms by which foldamers
antagonize Aβ-misfolding. Foldamers have amides oriented
appropriately (Figure 2) to block growth from fibril ends
during seeded polymerization. They are also relatively flat and
aromatic (Figure 2) and might antagonize secondary nucleation
by binding to the lateral surface of fibrils. Foldamer insertion into
molten oligomers could inhibit rearrangement events required for
nucleation during spontaneous assembly. Differences in the ability
of specific foldamers to inhibit Aβ42 fibrillization compared
with Aβ43 fibrillization probably reflect differential antagonism
of events driven by the additional C-terminal steric zipper
hexapeptide (G38VVIAT43) of Aβ43.

Aromatic foldamers could be useful amyloidogenesis inhibitors
for various disease-associated proteins. Indeed, another class
of aromatic foldamer inhibits amylin fibrillization, which is
connected to Type 2 diabetes [66]. Thus, foldamers await further
development to antagonize protein misfolding in several settings.
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